

AFRL-IF-RS-TR-2005-258
Final Technical Report
July 2005

HIGH PERFORMANCE COMPUTING (HPC)
CHALLENGE (HPCC) BENCHMARK SUITE
DEVELOPMENT

CACI Technologies, Incorporated

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. Q455

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2005-258 has been reviewed and is approved for publication

APPROVED: /s/

CHRISTOPHER FLYNN
Project Engineer

 FOR THE DIRECTOR: /s/

JAMES A. COLLINS, Acting Chief
 Advanced Computing Division
Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
JULY 2005

3. REPORT TYPE AND DATES COVERED
Final Sep 03 – Oct 04

4. TITLE AND SUBTITLE
HIGH PERFORMANCE COMPUTING (HPC) CHALLENGE (HPCC)
BENCHMARK SUITE DEVELOPMENT

6. AUTHOR(S)
Jack Dongarra

5. FUNDING NUMBERS
C - F30602-00-D-0021
PE - 62301E
PR - Q455
TA - QF
WU - 26

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Prime: Sub:
CACI Technologies, Incorporated University of Tennessee
1300 Floyd Avenue 1122 Volunteer Boulevard
Rome New York 13440 Knoxville Tennessee 37996-3450

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFTC
3701 North Fairfax Drive 26 Electronic Parkway
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2005-258

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Christopher Flynn/IFTC/(315) 330-3249/ Christopher.Flynn@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The goal of performance modeling is to measure predict, and understand the performance of a computer program or set
of programs on a computer system. The applications of performance modeling are numerous, including evaluation of
algorithms, optimization of code implementation, parallel library development, and comparison of system architectures,
parallel system design, and procurement of new systems. The overall objective of this effort was to survey a number of
DoD related applications in an effort to ascertain their needs with respect to determining what metrics exist, what
metrics need to be developed.

15. NUMBER OF PAGES
22

14. SUBJECT TERMS
High Performance Computing, Benchmarks, Metrics

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

 i

Table of Contents

Summary ... 1

Introduction... 2

Methods, Assumptions, and Procedures ... 2

Integrity of the Benchmark Code.. 4

Uniform verification ... 4

Reasonable optimization... 5

Convenience and correctness.. 5

Results Overview.. 5

Benchmark Data.. 6

Benchmark Optimization and Result Database .. 7

Rules for Running the Benchmark.. 8

Project's Website... 10

Conclusion .. 11

References... 11

Appendix... 13

Benchmark Code... 13

Acronyms.. 17

 1

Summary
The work for this project was comprised of the following major areas:

• Provide a focused research and development program, creating new generations

of high-end programming benchmarks in order to realize a new vision of high-end

computing, High Productivity Computing Systems (HPCS).

• Expose the issues of low efficiency, scalability, software tools and environments,

and growing physical constraints.

• Characterize architecture performance of parallel systems being developed for the

DAPRA High Productivity Computing Systems Program.

• Develop software for the benchmarking and performance evaluation of key

components of high performance systems.

• Develop methods for guiding the collection of performance data and for analyzing

and abstracting from measured performance data.

• Help promote this effort in the community.

The objectives of this effort were:

• To establish a comprehensive set of parallel benchmarks that is generally

accepted by both users and vendors of parallel systems.

• To provide a focus for parallel benchmark activities and avoid unnecessary

duplication of effort and proliferation of benchmarks.

• To set standards for benchmarking methodology and result-reporting together

with a control database/repository for both the benchmarks and the results.

• To make the benchmarks and results freely available to the public domain.

• To engage the high-performance community in helping define the future

expansion of the benchmark collection.

• To run HPC Challenge over a range of parameters.

• To collect and make available performance results in a standard web based

format.

• To compute software and hardware metrics.

• To apply the run time tools being studied by the Execution Time modeling group

to HPC Challenge.

 2

Introduction
Unfortunately, much of the literature focuses on ad hoc approaches to the evaluation of

systems rather than on the potential standardization of the benchmark process. If

benchmarking is to mature sufficiently to meet the requirements of system architects as

well as application and algorithm developers, it must address the issue of standardization.

A number of projects such as Perfect, NPB, ParkBench, and others have laid the

groundwork for what we hope will be a new era in benchmarking and evaluating the

performance of computers. The complexity of these machines requires a new level of

detail in the measurement and comprehension of the results. The quotation of a single

number for any given advanced architecture is a disservice to manufacturers and users

alike, for several reasons. First, there is a great variation in performance from one

computation to another on a given machine; typically the variation may be one or two

orders of magnitude, depending on the type of machine. Secondly, the ranking of similar

machines often changes as one goes from one application to another. So, for example, the

best machine for circuit simulation may not be the best machine for computational fluid

dynamics. Finally, the performance depends greatly on a combination of compiler

characteristics and the human effort that was expended on obtaining the results.

Methods, Assumptions, and Procedures
This first phase of the project developed, hardened, and reported on a number of

benchmarks. The collection of tests included tests on a single processor (local) and tests

over the complete system (global). Each examined performance evaluation for spatial

locality and temporal locality. The tests on a local basis include DGEMM, STREAM,

RandomAccess, and FFT and the tests on a global basis included High Performance

Linpack, PTRANS, RandomAccess, and FFT.

The most reliable technique for determining the performance of a program on a computer

system is to run and time the program (multiple times), but this can be very expensive

and it rarely leads to any deep understanding of the performance issues. It also does not

provide information on how the performance will change under different circumstances

(e.g., scaling the problem or system parameters, or porting to a different machine).

 3

An alternative approach to running the actual application codes is to develop a set of

representative benchmark programs and to run these benchmarks on various systems with

various problem and system sizes. The problem with this approach is that a quantitative

analysis of the measured data is necessary to allow a deeper understanding and

interpretation - i.e., abstraction of the measured results. Statistical analysis techniques

require a large amount of data to be collected. However, collecting data for all possible

system and problem parameter settings is impractical. Hence, a determination needs to be

made of what and how much data needs to be collected to provide an adequate basis for

sound analysis.

Another approach is to generate a model of the program and the computer system and use

the model to make performance predictions, varying model parameters to simulate

varying program and computer system parameters. The difficulty with this approach is in

generating and validating the model. The performance of production-level application

codes is a result of complex interactions between processor architecture, memory access

patterns, the memory hierarchy, the communication subsystem, and the system software.

Modeling each of the complex components of the system alone is a challenge. Still more

challenging is the task of accurately modeling the interactions between components and

the performance of complex application codes on the entire system.

Our approach in the second phase of this effort was to investigate the performance

modeling problem by combining benchmarking, statistical analysis, and hierarchical

modeling techniques to produce accurate models that can predict the performance of

complex applications on today's and tomorrow's high performance systems.

Although this work did not directly address performance engineering of complex

application codes, our work laid the basis for the construction of parallel libraries that

allow the reconstruction of application codes on several distinct architectures so as to

assure performance portability. Once the requirements of applications are well

understood, one can construct a library in a layered fashion.

 4

The overall objective of this effort was to survey a number of DARPA related

applications in an effort to ascertain their needs with respect to determining what metrics

exist and what metrics need to be developed. In the course of this effort we helped in

defining the metrics for future productivity, in particular:

• Temporal data locality measures the memory access patterns' reuse of data in

CPU time domain. In other words, it measures the likelihood of a datum to be

used in two close points in time.

• Spatial data locality measures the memory access patterns' reuse of data in

memory address space domain. In other words, it measures the likelihood of two

data being used provided that they are close to each other in memory.

• Source Line Of Code (SLOC) count is a simple yet very effective measure of

code complexity and in turn characterizes very well the human effort involved in

writing, maintaining, and refactoring a piece of code.

Using the above metrics, a set of representative application kernels were selected that

reveal system performance and productivity under the workloads of varying values of the

metrics so that bounds can be established for end-user applications.

Integrity of the Benchmark Code
The HPCC benchmark includes existing and well known benchmark codes as well as not

so well known codes that were not intended for benchmarking by their authors. In both

cases one may argue that it is possible to obtain HPCC-equivalent functionality by

running each of the included tests separately or some subset thereof. Based on our

extensive experience in high performance benchmarking, utilization of the entire suite, up

to this point, offers as complete an analysis of benchmarking as has ever been done.

There are a few important reasons why performing individual or subset tests would be

neither practical nor complete:

 Uniform verification

 Each code was examined and (as necessary) augmented with a robust verification

procedure that ensures numerical correctness of the result. This is in sharp

contrast to traditional forms of benchmarking that only focus on best performance

 5

(or best time).

 Reasonable optimization

 In the hands of a skillful benchmarking engineer, each of HPCC’s individual tests

alone can be optimized beyond any skillful user's comprehension. Such a scenario

is made unlikely with an HPCC framework that encapsulates all the tests in a

single runtime thus excluding the possibility of switching the tested system into a

special mode that would only benefit a single test. Another contribution of HPCC

is the transfer of knowledge from the benchmarking engineer to the user as the

optimization techniques are meant to be disclosed by the party submitting results.

 Convenience and correctness

 Running each of HPCC's tests separately requires manual effort, which is

cumbersome, costly, and error prone if done in a robust and reliable manner.

HPCC eliminates this by automating the process of gathering performance data on

widely applicable hardware characteristics.

Results Overview
As a result of this project, software was developed in an open source mechanism and

distributed to the community via the normal channels for open source software – a

publicly available web page is used for downloading stable releases of the software while

read-only CVS access may be used for development snapshots. Occasionally, the source

code was distributed via email if other means were inaccessible. There was a monthly

phone call and/or Access Grid meetings of participants to exchange ideas and progress as

well as an electronic mailing list to assist with participant communication. Finally, the

lead participants participated in face-to-face meetings as needed, and there has been at

least one such meeting annually.

The problem area may be characterized by most common memory access patterns and is

defined by seven benchmarks: HPL, DGEMM, STREAM, PTRANS, RandomAccess,

FFT, and Latency/Bandwidth:

• HPL is the Linpack Toward Peak Performance (TPP) benchmark. The test

 6

stresses the floating point performance of a system.

• DGEMM measures the floating point rate of execution of double precision real

matrix-matrix multiplication.

• STREAM is a benchmark that measures sustainable memory bandwidth (in GB/s)

of simple vector application kernels.

• PTRANS (from the ParkBench suite) measures the rate of transfer for large arrays

of data between multiprocessor's memories.

• RandomAccess measures the rate of integer updates of random memory locations.

• FFT measures the floating point rate of execution of double precision complex

one-dimensional Discrete Fourier Transform (DFT).

• Latency/Bandwidth measures (as the name suggests) latency and bandwidth of

communication patterns of increasing complexity between as many nodes as is

time-wise feasible.

Benchmark Data
To ensure broad impact and scientific value of the benchmark suite, results from a vast

array of data are collected for each submission. The data is gathered in a database that has

read-only public access. The data in the database can be divided into the following

categories:

• CPU parameters such as floating-point execution rate (measured in Gflop/s) of

various computational kernels.

• Memory subsystem parameters such as data transfer rates (measured in GB/s) for

various CPU workloads and memory bus sharing scenarios.

• Communication subsystem parameters such as transfer rates (measured in GB/s)

across the system interconnect and message latencies (measured in micro-

seconds).

• Hardware, software, and productivity optimizations including complete

descriptions of the hardware configuration, software environment and tools that

were used to produce the executable, and all the specific changes applied to the

optimized run.

 7

Benchmark Optimization and Result Database
An integral part of HPCC is the database that stores various optimization techniques

applicable to the HPCC tests as well as the results of applying these optimizations. All of

the data is time stamped and consistently gathered from every system submitted to the

HPCC website. As such, it constitutes an invaluable resource for hardware and software

vendors as well as application vendors.

The optimization portion of the database stores two types of information:

1. Hardware/software optimization

This portion includes reports on how the programming environment and

system libraries influence hardware and its performance.

2. Productivity optimization

This portion of the database shows how the human factor is included in

the overall system design. In particular the result submitters describe

changes made for the optimized run of the benchmark. Based on this

information, conclusions may be drawn about feasibility and actual

performance gains for end-applications.

The results portion of the database includes various computer system parameters gathered

during benchmark run. In particular, the data may be divided into three groups:

1. Processor parameters

These include floating-point execution rates for computational kernels

such as global linear equation solving, local matrix multiplication, and

local/global FFT. Numerical capabilities of the processor are also noted by

measuring relevant numerical norms that assess correctness and quality of

the delivered solution.

2. Memory parameters

These include transfer rates of multiple sorts that show performance of the

 8

simplest data movement scenarios (CPU-memory transfer) and more

elaborate schemes that involve multiple CPU calculations combined with

simultaneous accesses to multiple memory modules.

3. Interconnect parameters

Essentially, two types of parameters are considered: latency and

bandwidth. The measurement scenarios used to obtain them vary greatly

from the simple polling-driven scheme with only two interconnect end-

points exchanging data in a synchronous fashion to network-capacity,

limited tests of raw communication and computation-interleaved probes

that rely on communication system throughput and tolerance of high

volume traffic.

Rules for Running the Benchmark
The HPCC rules ensure integrity of the benchmark code when run repeatedly on the user

system by requiring a wide range of data to provide exhaustive information about the

system used for benchmarking and conditions under which the run took place. Due to the

fact that the HPCC benchmark is already being used in procurement cycles at many

supercomputing centers, we maintain the rules and make them available at the web site.

The rules are included here verbatim:

There must be one baseline run submitted for each computer system entered in the

archive. There may also exist an optimized run for each computer system.

1. Baseline Runs: Optimizations as described below are allowed.

• Compile and load options

Compiler or loader flags, which are supported and documented by the supplier,

are allowed. These include porting, optimization, and preprocessor invocation.

• Libraries

Linking to optimized versions of the following libraries is allowed:

 BLAS

 MPI

Acceptable use of such libraries is subject to the following rules:

 9

• All libraries used shall be disclosed with the results submission. Each library shall

be identified by library name, revision, and source (supplier). Libraries, which are

not generally available, are not permitted unless they are made available by the

reporting organization within six months.

• Calls to library subroutines should have equivalent functionality to that in the

released benchmark code. Code modifications to accommodate various library

call formats are not allowed.

• Only complete benchmark output may be submitted - partial results will not be

accepted.

2. Optimized Runs

• Code modification

Provided that the input and output specification is preserved, the following

routines may be substituted:

 In HPL: HPL_pdgesv(), HPL_pdtrsv() (factorization and substitution

functions)

 no changes are allowed in the DGEMM component

 In PTRANS: pdtrans()

 In STREAM: tuned_STREAM_Copy(), tuned_STREAM_Scale(),

tuned_STREAM_Add(), tuned_STREAM_Triad()

 In RandomAccess: MPIRandomAccessUpdate() and

RandomAccessUpdate()

 In FFT: fftw_malloc(), fftw_free(), fftw_create_plan(), fftw_one(),

fftw_destroy_plan(), fftw_mpi_create_plan(), fftw_mpi_local_sizes(),

fftw_mpi(), fftw_mpi_destroy_plan() (all these functions are compatible

with FFTW 2.1.5 so the benchmark code can be directly linked against

FFTW 2.1.5 by only adding proper compiler and linker flags, e.g. -

DUSING_FFTW).

 In Latency/Bandwidth component alternative MPI routines might be used

for communication. But only standard MPI calls are to be preformed and

only to the MPI library that is widely available on the tested system.

 10

• Limitations of Optimization

 Code with limited calculation accuracy

The calculation should be carried out in full precision (64-bit or the

equivalent). However the substitution of algorithms is allowed (see

Exchange of the used mathematical algorithm).

 Exchange of the used mathematical algorithm

Any change of algorithms must be fully disclosed and is subject to review

by the HPC Challenge Committee. Passing the verification test is a

necessary condition for such an approval. The substituted algorithm must

be as robust as the baseline algorithm. For the matrix multiply in the HPL

benchmark, Strassen Algorithm may not be used as it changes the

operation count of the algorithm.

 Using the knowledge of the solution

Any modification of the code or input data sets, which uses the knowledge

of the solution or of the verification test, is not permitted.

 Code to circumvent the actual computation

Any modification of the code to circumvent the actual computation is not

permitted.

Project's Website
In order to provide easy access to the results of this project a publicly available web site

was developed. The website can be accessed at http://icl.cs.utk.edu/hpcc/ (the site has

nearly 2000 visitors per month and has been used to download the benchmark code by

almost 1000 visitors). It consists of the following components:

• Rules for running the benchmark and reporting results.

• News items from external media outlets.

• Download page that allows downloading of the benchmark code in various forms

and versions.

• Frequently Asked Questions has an extensive list of questions frequently

encountered in benchmarking and pertaining to the HPCC Suite.

• Resource page with (mostly external) links related to the benchmark suite.

 11

• Pages with sponsors and collaborators that made the project possible.

• Web form for submitting information about tested system and the output of the

benchmark.

• Database read-only interface that allows users to interactively obtain various views

of the submitted data or to export the contents of the database for archiving or for a

more thorough analysis on the user system.

Conclusion
The impact of this work on the community is the availability of an easy mechanism to

test, evaluate, and compare high productivity systems. The applications of performance

modeling are numerous, including evaluation of algorithms, optimization of code

implementations, parallel library development, comparison of system architectures,

parallel system design, and procurement of new systems.

The main components of the HPC Challenge Benchmark Suite are based on existing

codes that are well known and used in the HPC community. This fact greatly contributes

to wider adoption of our effort. In addition, our framework combines these existing codes

together in a unique way by defining very specific rules about the conditions under which

they should be run and some of the included tests are used in new scenarios. We also

largely expanded on the benchmark deployment and results data to facilitate fairness of

performance assessment.

References
• Alice E. Koniges, Rolf Rabenseifner and Karl Solchenbach: “Benchmark Design for

Characterization of Balanced High-Performance Architectures,” In IEEE Computer

Society Press, www.computer.org/proceedings/, Proceedings of the 15th International

Parallel and Distributed Processing Symposium (IPDPS'01), Workshop on Massively

Parallel Processing (WMPP), April 23-27, 2001, San Francisco, USA.

• Rolf Rabenseifner and Alice E. Koniges: “Effective Communication and File-I/O

Bandwidth Benchmarks,” In J. Dongarra and Yiannis Cotronis (Eds.), Recent Advances

in Parallel Virtual Machine and Message Passing Interface, Proceedings of the 8th

European PVM/MPI Users' Group Meeting, EuroPVM/MPI 2001, Santorini, Greece,

 12

Sep. 23-26, LNCS 2131, pp 24-35.

• Jack Dongarra, Piotr Luszczek, and Antoine Petitet: “The LINPACK Benchmark:

Past, Present, and Future,” Concurrency and Computation: Practice and Experience

15(9):803-820, August 2003, ISSN 1532-0634.

• John D. McCalpin, STREAM: Sustainable Memory Bandwidth in High Performance

Computers. http://www.cs.virginia.edu/stream/

• Antoine Petitet, R. Clint Whaley, Jack Dongarra, Andy Cleary, HPL - A Portable

Implementation of the High Performance Linpack Benchmark for Distributed-Memory

Computers, http://www.netlib.org/benchmark/hpl/

• PARKBENCH - PARallel Kernels and BENCHmarks,

http://www.netlib.org/parkbench/

• Jack Dongarra and Piotr Luszczek: “Introduction to the HPC Challenge Benchmark

Suite,” Computer Science Department Technical Report 2005, UT-CS-05-544,

University of Tennessee Knoxville.

• Stephen Shankland. “Supercomputer ranking method faces revision”, Published June

18, 2004. CNET News.com,

http://news.com.com/Supercomputer+ranking+method+faces+revision/2100-7337_3-

5238405.html?tag=nefd.lede.

• Jan Stafford. “Cray CTO: Supercomputers outshine Linux clusters in HPC, Part 1”,

Published August 24, 2004. SearchEnterpriseLinux.com,

http://searchenterpriselinux.techtarget.com/originalContent/0,289142,sid39_gci1000889,

00.html

• Mark Hachman. “Alternative Supercomputer Metrics Sought”, Published November 8,

2004. eWEEK.com, http://www.eweek.com/article2/0,1759,1720493,00.asp.

• Christopher Lazou. “HPC Benchmarks: Going for Gold in a Computer Olympiad?”,

Publised January 21, 2005. HPCwire,

http://www.tgc.com/hpcwire/hpcwireWWW/05/0121/109098.html

• “Cray XD1 Supercomputer Outscores Competition in HPC Challenge Benchmark

Tests; Benchmarks Assess Real-World Performance in Several Key Aspects of

Supercomputing”, published February 14, 2005. BusinessWire

http://home.businesswire.com/portal/site/google/index.jsp?ndmViewId=news_view&new

sId=20050214005533&newsLang=en

 13

Appendix

Benchmark Code
The initial public release of the benchmark included over 40,000 lines of C code. A

compact reference implementation is included in this report that gives a flavor of the

actual implementation. The reference implementation is written in a popular scripting

language called Python.

• HPL – Linpack reference implementation
import numarray, time

import numarray.random_array as naRA

import numarray.linear_algebra as naLA

n = 1000

a = naRA.random([n, n])

b = naRA.random([n, 1])

t = -time.time()

x = naLA.solve_linear_equations(a, b)

t += time.time()

r = numarray.dot(a, x) – b

r_n = numarray.maximum.reduce(abs(r))

print t, 2.0e-9 / 3.0 * n**3 / t

print r_n, r_n / (n * 1e-16)

• DGEMM reference implementation
import numarray, time

import numarray.random_array as naRA

n = 1000

a = naRA.random([n, n])

b = naRA.random([n, n])

c = naRA.random([n, n])

alpha = a[n/2, 0]

beta = b[n/2, 0]

t = -time.time()

c = beta * c + alpha * numarray.dot(a, b)

t += time.time()

print t, 2e-9 * n**3 / t

 14

• STREAM reference implementation
import numarray, time

import numarray.random_array as naRA

import numarray.linear_algebra as naLA

m = 1000

a = naRA.random([m, 1])

alpha = naRA.random([1, 1])[0]

Copy, Scale = "Copy", "Scale"

Add, Triad = "Add", "Triad"

td = {}

td[Copy] = -time.time()

c = a[:]

td[Copy] += time.time()

td[Scale] = -time.time()

b = alpha * c

td[Scale] += time.time()

td[Add] = -time.time()

c = a * b

td[Add] += time.time()

td[Triad] = -time.time()

a = b + alpha * c

td[Triad] += time.time()

for op in (Copy, Scale, Add, Triad):

 t = td[op]

 s = op[0] in ("C", "S") and 2 or 3

 print op, t, 8.0e-9 * s * m / t

• PTRANS reference implementation
import numarray, time

import numarray.random_array as naRA

import numarray.linear_algebra as naLA

n = 1000

a = naRA.random([n, n])

b = naRA.random([n, n])

t = -time.time()

a = numarray.transpose(a)+b

 15

t += time.time()

print t, 8e-9 * n**2 / t

• RandomAccess reference implementation
from time import time

from numarray import *

m = 1024

table = zeros([m], UInt64)

ran = zeros([128], UInt64)

mupdate = 4 * m

POLY, PERIOD = 7, 1317624576693539401L

def ridx(arr, i, tmp):

 tmp[0:1] = arr[i:i+1]

 if tmp.astype(Int64)[0] < 0:

 tmp <<= 1

 tmp ^= POLY

 else:

 tmp <<= 1

def starts(n):

 n = array([n], Int64)

 m2 = zeros([64], UInt64)

 while n[0] < 0: n += PERIOD

 while n[0] > PERIOD: n -= PERIOD

 if n[0] == 0: return 1

 temp = array([1], UInt64)

 ival = array([0], UInt64)

 for i in range(64):

 m2[i] = temp[0]

 ridx(temp, 0, ival)

 ridx(temp, 0, ival)

 for i in range(62, -1, -1):

 if ((n>>i) & 1)[0]: break

 ran = array([2], UInt64)

 16

 while (i > 0):

 temp[0] = 0

 for j in range(64):

 if ((ran>>j) & 1)[0]:

 temp ^= m2[j:j+1]

 ran[0] = temp[0]

 i -= 1

 if ((n>>i) & 1)[0]:

 ridx(ran, 0, ival)

 return ran[0]

ival = array([0], UInt64)

t = -time()

for i in range(m): table[i] = i

for j in range(128):

 ran[j] = starts(mupdate / 128 * j)

for i in range(mupdate / 128):

 for j in range(128):

 ridx(ran, j, ival)

 table[ran[j] & (m - 1)] ^= ran[j]

t += time()

temp = array([1], UInt64)

for i in range(mupdate):

 ridx(temp, 0, ival)

 table[temp & (m - 1)] ^= temp

temp = 0

for i in range(m):

 if table[i] != i: temp += 1

print t, 1e-9 * mupdate / t, 100.0*temp/m

• FFT reference implementation
import numarray, numarray.fft, time, math

import numarray.random_array as naRA

 17

m = 1024

re = naRA.random([m, 1])

im = naRA.random([m, 1])

a = re + 1.0j * im

t = -time.time()

b = numarray.fft.fft(a)

t += time.time()

r = a - numarray.fft.inverse_fft(b)

r_n = numarray.maximum.reduce(abs(r))

Gflop = 5e-9 * m * math.log(m) / math.log(2)

print t, Gflop / t, r_n

Acronyms
Explanation of acronyms used in this report:

1. CPU – Central Processing Unit

2. CSCS – Swiss Center for Scientific Computing

3. CVS – Concurrent Versions System

4. DARPA – The Defense Advanced Research Projects Agency

5. DFT – Discrete Fourier Transform

6. DGEMM – Double-precision General Matrix-Matrix multiply

7. FFT – Fast Fourier Transform

8. FFTE – an FFT code written in Fortran

9. FFTW – an FFT code written in C

10. HPCC – High Performance Computing Challenge Benchmark Suite

11. HPCS – High Productivity Computing Systems

12. HPL – High Performance Linpack benchmark

13. Linpack – LINear PACKage: a set of Fortran subroutines for numerical linear

algebra; also a benchmark based on one of the Linpack subroutines

14. MPI – Message Passing Interface

15. NPB – NAS Parallel Benchmarks

 18

16. PARKBENCH – PARallel Kernels and BENchmarks

17. PTRANS – Parallel matrix TRANSpose

18. PVM – Parallel Virtual Machine

19. RandomAccess – formerly known as GUPS benchmark

20. SLOC – Source Line of Code

21. STREAM – sustainable memory bandwidth test

